Chemistry Reference Sheet

1	1						erio	C Ta	le	the	ler	nts						18
	1 \mathbf{H} Hydrogen 1.008	2					y						13	14	15	16	17	2 He Helium 4.003
2	$\begin{gathered} 3 \\ \mathbf{L i} \\ \text { Lithium } \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ \text { Beryllium } \\ 9.012 \end{gathered}$			$\begin{gathered} 11 \\ \mathbf{N a} \\ \text { sodium } \\ 22.990 \end{gathered}$		ent Symb ent Nam	ol					$\begin{array}{\|c\|} \hline \mathbf{5} \\ \mathbf{B} \\ \text { Boron } \\ 10.811 \\ \hline \end{array}$	$\begin{gathered} \hline 6 \\ \text { Carbon } \\ 12.011 \end{gathered}$	$\begin{gathered} \hline 7 \\ \mathbf{N} \\ \text { Nitrogen } \\ 14.007 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ \text { oxygen } \\ 15.999 \end{gathered}$		$\begin{gathered} 10 \\ \text { Ne } \\ \text { Neon } \\ 20.180 \end{gathered}$
3	11 Na Sodium 22.990	12 Mg Magnesium 24.305	3	4	5	6	7	8	9	10	11	12	13 AI Aluminum 26.982	$\begin{gathered} 14 \\ \mathbf{S i} \\ \text { silicon } \\ 28.086 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ \text { Phosphorus } \\ 30.974 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.066 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ \text { Chlorine } \\ 35.453 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ \text { Argon } \\ 39.948 \end{gathered}$
4	$\begin{gathered} 19 \\ \mathbf{K} \\ \text { Potassium } \\ 39.098 \end{gathered}$	$\begin{gathered} 20 \\ \begin{array}{c} \text { Calcium } \\ \text { Ca } \end{array}{ }^{2} \times 078 \end{gathered}$	21 Sc Scandium 44.956	$\begin{gathered} 22 \\ \mathbf{T i} \\ \text { Titanium } \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ \text { Vanadium } \\ 50.942 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ \text { Chromium } \\ 51.996 \end{gathered}$	25 Mn Manganese 54.938	$\begin{gathered} 26 \\ \text { Fe } \\ \text { Iron } \\ 55.845 \\ \hline \end{gathered}$	27 Co Cobalt 58.933	$\begin{gathered} 28 \\ \mathbf{N i} \\ \text { Nickel } \\ 58.693 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ \text { Copper } \\ 63.546 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ \text { Zinc } \\ 65.409 \end{gathered}$	31 Ga Gallium 69.723	$\begin{array}{\|c\|} \hline 32 \\ \mathbf{G e} \\ \text { Germanium } \\ 72.610 \\ \hline \end{array}$	$\begin{gathered} 33 \\ \text { As } \\ \text { Arsenic } \\ 74.922 \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ \text { Selenium } \\ 78.960 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ \text { Bromine } \\ 79.904 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ \text { Krypton } \\ 83.800 \\ \hline \end{gathered}$
5	37 Rb Rubidium 85.468	$\begin{gathered} 38 \\ \mathbf{S r} \\ \text { Strontium } \\ 87.620 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yttrium } \\ 88.906 \end{gathered}$	$\begin{gathered} \mathbf{4 0} \\ \mathbf{Z r} \\ \text { Zirconium } \\ 91.224 \end{gathered}$	41 Nb Niobium 92.906	42 Mo Molybdenum 95.940	$\begin{array}{\|c\|} \hline 43 \\ \text { TC } \\ \text { Technetium } \\ (98) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ \mathbf{R u} \\ \text { Ruthenium } \\ 101.070 \\ \hline \end{array}$	45 Rh Rhodium 102.906	$\begin{gathered} 46 \\ \text { Pd } \\ \text { Palladium } \\ 106.420 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ \text { silver } \\ 107.868 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ \text { Cadmium } \\ 112.411 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ 114.818 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ \operatorname{Tin} \\ 118.710 \end{gathered}$	$\begin{aligned} & 51 \\ & \text { Sb } \end{aligned}$ Antimony 121.760	$\begin{gathered} 52 \\ \mathbf{T e} \\ \text { Tellurium } \\ 127.600 \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { lodine } \\ 126.904 \end{gathered}$	```54 Xe Xenon 131.290```
6	$\begin{gathered} 55 \\ \substack{\text { Cs } \\ \text { Cesium }} \\ 132.905 \end{gathered}$	$\begin{array}{\|c\|} \hline 56 \\ \mathbf{B a} \\ \text { Barium } \\ 137.327 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ \text { Lanthanum } \\ 138.905 \end{array}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ \substack{\text { Hafnium } \\ 178.490} \end{gathered}$	73 Ta Tantalum 180.948	$\begin{gathered} 74 \\ \text { W } \\ \text { Tungsten } \\ 183.840 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ \text { Rhenium } \\ 186.207 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ \text { Osmium } \\ 190.230 \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \text { Ir } \\ \text { Iridium } \\ 192.217 \end{array}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ \text { Platinum } \\ 195.084 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ \text { Gold } \\ 196.967 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ \text { Mercury } \\ 200.590 \end{gathered}$	$\begin{array}{\|c\|} \hline 81 \\ \text { TI } \\ \text { Thallium } \\ 204.383 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{8 2} \\ \mathbf{P b} \\ \text { Lead } \\ 207.200 \end{array}$	$\begin{array}{\|c\|} \hline 83 \\ \text { Bi } \\ \text { Bismuth } \\ 208.980 \end{array}$	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	$\begin{aligned} & 87 \\ & \text { Fr } \end{aligned}$ Francium (223)	88 Ra Radium (226)	$\begin{gathered} 89 \\ \text { Ac } \\ \text { Actinium } \\ (227) \end{gathered}$	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	$\begin{array}{\|c\|} \hline 106 \\ \mathbf{S g} \\ \text { Seaborgium } \\ (266) \end{array}$	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 $\mathbf{M t}$ Meitnerium (268)	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \\ \text { Darmstadtium } \\ (271) \end{array}$	111 $\mathbf{R g}$ Roentgenium (272)	$\begin{array}{\|c\|} \hline 112 \\ \mathbf{C n} \\ \text { Copernicium } \\ (285) \end{array}$	113 Uut $?$	114 FI Flerovium (289)	115 Uup ? \qquad	$\begin{array}{\|c\|} \hline 116 \\ \mathbf{L V} \\ \text { Livermorium } \\ (292) \\ \hline \end{array}$	117 Uus $?$	118 Uuo ?
	* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.				$\begin{gathered} 58 \\ \text { Ce } \\ \text { Cerium } \\ 140.116 \end{gathered}$	59 $\mathbf{P r}$ Praseodymium 140.908	60 $\mathbf{N d}$ Neodymium 144.242	61 Pm Promethium (145)	62 Sm Samarium 150.360		64 Gd Gadolinium 157.250	$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ \text { Terbium } \\ 158.925 \\ \hline \end{array}$	66 Dy Dysprosium 162.500	67 Ho Holmium 164.930	$\begin{array}{\|c} \hline 68 \\ \text { Er } \\ \text { Erbium } \\ 167.259 \end{array}$	$\begin{array}{\|c\|} \hline 69 \\ \text { Tm } \\ \text { Thulium } \\ 168.934 \end{array}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ \text { Ytterbium } \\ 173.040 \end{gathered}$	
					$\begin{gathered} 90 \\ \text { Th } \\ \text { Thorium } \\ 232.038 \end{gathered}$	91 $\mathbf{P a}$ Protactinium 231.036	$\begin{array}{\|c\|} \hline 92 \\ \mathbf{U} \\ \text { Uranium } \\ 238.029 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 93 \\ \mathbf{N p} \\ \text { Neptunium } \\ (237) \\ \hline \end{array}$	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	$\begin{array}{\|c\|} \hline 98 \\ \mathbf{C f} \\ \text { Californium } \\ (251) \end{array}$	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	$\begin{array}{\|c\|} \hline 103 \\ \mathbf{L r} \\ \text { Lawrencium } \\ (262) \\ \hline \end{array}$

[^0]
Chemistry Reference Page
 Formulas, Constants, and Unit Conversions

Formulas	
Change in Enthalpy (Heat): $Q=m(\Delta T) c_{p}$	Heat of Fusion: $Q=m \Delta H_{\text {fus }}$
Ideal Gas Law: $P V=n R T$	Heat of Vaporization: $Q=m \triangle H_{\text {vap }}$
Density: $\mathrm{d}=\frac{\mathrm{m}}{\mathrm{V}}$	$\text { Molarity }(M)=\frac{\text { mol of solute }}{\text { L of solution }}$
Combined Gas Law: $\quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$	$\text { Molality }(m)=\frac{\text { mol of solute }}{\mathrm{kg} \text { of solvent }}$
Boiling Point Elevation: $\Delta T_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}} \times m$	Freezing Point Depression: $\Delta T_{f}=\mathrm{k}_{\mathrm{f}} \times m$

Constants

Universal Gas Constant (R): $0.0821 \frac{\mathrm{~atm} \times \mathrm{L}}{\mathrm{mol} \times \mathrm{K}}$, or equal to $8.31 \frac{\mathrm{kPa} \times \mathrm{L}}{\mathrm{mol} \times \mathrm{K}}$ Molar Volume at STP: $22.4 \frac{\mathrm{~L}}{\mathrm{~mol}} \quad$ Avogadro's Number (1 mole): 6.02×10^{23} Specific Heat Capacity of Liquid Water: $c_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.00 \frac{\mathrm{cal}}{\mathrm{g} \times{ }^{\circ} \mathrm{C}}=4.18 \frac{\mathrm{~J}}{\mathrm{~g} \times{ }^{\circ} \mathrm{C}}$

Unit Conversions

$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ Torr $=101.3 \mathrm{kPa}=14.7 \frac{\mathrm{lb}}{\mathrm{in} .^{2}}=29.92 \mathrm{in} . \mathrm{Hg} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273$

$$
\begin{aligned}
& 1.000 \text { calorie }=4.184 \text { Joules } 1 \mathrm{~mL}=1 \mathrm{~cm}^{3} \quad 1 \mathrm{~L}=1,000 \mathrm{~mL}=1,000 \mathrm{~cm}^{3} \\
& \text { giga }(\mathrm{G})=10^{9} \text {, mega }(\mathrm{M})=10^{6}, \text { kilo }(\mathrm{k})=10^{3} \text {, hecto }(\mathrm{h})=10^{2} \text {, deka }(\text { da })=10^{1} \\
& \text { deci }(\mathrm{d})=10^{-1} \text {, centi }(\mathrm{c})=10^{-2} \text {, milli }(\mathrm{m})=10^{-3} \text {, micro }(\mu)=10^{-6} \text {, nano }(\mathrm{n})=10^{-9}
\end{aligned}
$$

Common lons					
Element Name	Charges	Ions	Charges	Ions	Charges
Silver (Ag^{1+})	1+	Ammonium ($\mathrm{NH}_{4}{ }^{+}$)	1+	Oxide (O^{2-})	2-
Zinc (Zn^{2+})	2+	Nitrate (NO_{3}^{-})	$1-$	Sulfide (S^{2-})	$2-$
Scandium (Sc^{3+})	3+	Nitrite ($\mathrm{NO}_{2}{ }^{-}$)	1-	Sulfate ($\mathrm{SO}_{4}{ }^{2-}$)	$2-$
Copper ($\mathrm{Cu}^{1+}, \mathrm{Cu}^{2+}$)	1+, 2+	Hydrogen Carbonate ($\mathrm{HCO}_{3}{ }^{-}$)	1-	Sulfite ($\mathrm{SO}_{3}{ }^{2-}$)	2-
Gold ($\mathrm{Au}^{1+}, \mathrm{Au}^{3+}$)	1+, 3+	Perchlorate ($\mathrm{ClO}_{4}{ }^{-}$)	1-	Carbonate ($\mathrm{CO}_{3}{ }^{2-}$)	$2-$
Cobalt ($\mathrm{Co}^{2+}, \mathrm{Co}^{3+}$)	2+, 3+	Chlorate ($\mathrm{ClO}_{3}{ }^{-}$)	1-	Peroxide ($\mathrm{O}_{2}{ }^{2-}$)	$2-$
Nickel (Ni^{2+}, Ni^{3+})	2+, 3+	Chlorite ($\mathrm{ClO}_{2}{ }^{-}$)	1-	Chromate ($\mathrm{CrO}_{4}{ }^{2-}$)	$2-$
Lead ($\mathrm{Pb}^{2+}, \mathrm{Pb}^{4+}$)	2+, 4+	Hypochlorite (ClO^{-})	1-	Dichromate $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right)$	$2-$
Tin ($\mathrm{Sn}^{2+}, \mathrm{Sn}^{4+}$)	2+, 4+			Phosphate (PO_{4}^{3-})	$3-$
Mercury ($\mathrm{Hg}^{1+}, \mathrm{Hg}^{2+}$)	1+, 2+				
Iron ($\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$)	2+, 3+				
Titanium ($\mathrm{Ti}^{2+}, \mathrm{Ti}^{3+}, \mathrm{Ti}^{4+}$)	2+, 3+, 4+				
Chromium ($\mathrm{Cr}^{2+}, \mathrm{Cr}^{3+}$)	2+, 3+				
Vanadium ($\mathrm{V}^{2+}, \mathrm{V}^{3+}, \mathrm{V}^{4+}$)	2+, 3+, 4+				
Manganese ($\mathrm{Mn}^{2+}, \mathrm{Mn}^{3+}, \mathrm{Mn}^{4+}$)	2+, 3+, 4+				

Turn over for Periodic Table of the Elements 7

[^0]: Turn over for Formulas, Constants, and Unit Conversions 7

